- **1.** Consider the function $f(x) = x^2$
 - a. By filling in the table of values, complete the limiting chord process for $f(x) = x^2$ at the point x = 1.

а	b	h = b - a	$ \begin{array}{c} f(b) \\ -f \\ \underline{(a)} \\ \overline{b-a} \end{array} $
1	2	1	
1	1.5		
1	1.1		
1	1.05		
1	1.01		
1	1.001		
1	1.0001		

b. The instantaneous rate of change of f(x) at x = 1 is:

- 2. The daily net profit of an upmarket restaurant can be modelled by the equation $y = -16x^2 + 304x$, where x is the number of customers.
 - a. Find the value of y at x = 0.
 - b. Find the value of y at x = 9.
 - c. Hence find the average rate of change in net profit over the interval [0, 9].
- 3. Differentiate the function $f(x) = (3x - 2)(4x^2 - 5)$. You may use the substitution u = 3x - 2 and $v = 4x^2 - 5$ in your working.
- 4. Differentiate

$$f(x) = (x^{2} + 3x - 2)(x^{2} - 3x - 2).$$

You may use the substitution $u = x^{2} + 3x - 2$

You may use the substitution $u = x^2 + 3x - 3x - 2$ and $v = x^2 - 3x - 2$ in your working.

- 5. Suppose we want to differentiate $y = \frac{9x}{8x-5}$ using the Quotient Rule.
 - a. Identify the function u.
 - b. Identify the function v.
 - c. Find u'.
 - d. Find v'.
 - e. Hence find y'.
 - f. Is it possible for the derivative of this function to be zero?

- 6. Suppose we want to differentiate $y = \frac{3x}{2x^2 5}$
 - a. Identify the function u.
 - b. Identify the function v.
 - c. Find u'.
 - d. Find v'.
 - e. Hence find y', giving your answer in factorised form.

7. Consider the function

 $f(x) = (5x^3 + 8x^2 - 3x - 5)^6.$ Redefine the function as composite functions f(u) and u(x), where u(x) is a polynomial.

$$u(x) = \square$$
$$f(u) = (\square)^{\square}$$

8. Find the primitive function of $9x^2 - 8x - 2$. Use *C* as the constant of integration.

_ _ _ _

- 9. Let $y = (x + 3)^5$ be defined as a composition of the functions $y = u^5$ and u = x + 3.
 - a. Determine $\frac{dy}{du}$.
 - b. Determine $\frac{du}{dx}$.
 - c. Hence determine $\frac{dy}{dx}$.

10.Find y if
$$\frac{dy}{dx} = \frac{1}{(4x+9)^6}$$
.

Use C as the constant of integration.

11. The position (in metres) of an object along a straight line after *t* seconds is modelled by

 $s(t) = 3t^2 + 7t + 4.$

We want to find the velocity of the object after $4 \,$ seconds.

- a. Determine v(t), the velocity function.
- b. What is the velocity of the object after $4 \,$ seconds?
- **12.** Find the equation of a curve given that the gradient at any point (x, y) is given by

 $\frac{dy}{dx} = (x+2)^2$, and that the point (-5, -7)

lies on the curve.

Use C as the constant of integration.